$\frac{\text { WJEC }}{\text { CBAC }}$

## GCE MARKING SCHEME

CHEMISTRY<br>AS/Advanced

## SUMMER 2013

## GCE CHEMISTRY - CH4

## SUMMER 2013 MARK SCHEME

Q. 1 (a) (i) (2-)Methylpropan-2-ol
(ii) 30.1 / 30
(iii) (Concentrated) sulfuric acid / phosphoric acid / aluminium oxide / pumice
(iv)

(with or without n )
(v)

(1) for structure, (1) for asterisk
(vi) $\quad \mathrm{I} \quad$ acidified potassium dichromate $/ \mathrm{H}^{+}, \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})$

II ethanal has a $\mathrm{C}=\mathrm{O}$ bond at $1650-1750 \mathrm{~cm}^{-1}$ (metaldehyde does not have this bond)
metaldehyde has a C - O bond at $1000-1300 \mathrm{~cm}^{-1}$ (ethanal does not have this bond)
[2]
(b) (i) Reagent 2,4-dinitrophenylhydrazine / 2,4-DNP OR iodine / NaOH or KI / NaOCI

Observation yellow/orange / red precipitate OR yellow precipitate (1) [2]
(ii) Reagent ethanol / sulfuric acid $\mathrm{OR} \quad \mathrm{NaHCO}_{3} \quad \mathrm{OR} \quad \mathrm{Ag}^{+} / \mathrm{NH}_{3} /$ Tollens' $(1)$
Q. 2 (a) React with iron(III) chloride solution

Purple solution with phenol, no reaction with methyl propenoate

## OR

React with aqueous bromine / bromine water
White precipitate with phenol (and bromine decolourised), bromine decolourised with methyl propenoate
(1) for reagent and (1) for observation with compound
(b) (i) It absorbs all colours except yellow / absorbs the blue end of the spectrum and reflects yellow - do not accept 'emits'
(ii) Tin / iron and concentrated hydrochloric acid
(c) (i) Moles of 2,4-dinitrophenol $=7.36 / 184=0.040$

Moles of 2,4-dinitrophenyl ethanoate $=7.91 / 226=0.035$
Percentage yield $=0.035 \times 100 / 0.040=87.5 / 88 \%$
(ii) $\quad \mathrm{R}_{\mathrm{f}}$ value is given by $\quad$ distance travelled by the 2,4-dinitrophenol distance travelled by the solvent front

$$
\begin{equation*}
=\frac{2.8}{5.0}=0.56 \tag{1}
\end{equation*}
$$

(d) (i) Nickel / platinum
(ii) The - OH groups are able to hydrogen bond with water (1) but these are a very small part of the 'urushiol' molecule (1)
Q. 3
(a) (i) $48.5 / 49 \%$
(ii) Find a use for the calcium sulfate
(b) Total volume of aqueous sodium hydroxide needed $=\frac{26.40 \times 250}{25.00}=264.0 \mathrm{~cm}^{3}$ (1)
from the graph this is equivalent to 0.011 mole of the acid
$\therefore \mathrm{M}_{\mathrm{r}}$ of the acid $=\frac{\text { mass }}{\text { no. of moles }}=\frac{2.31}{0.011}=210$

$$
\begin{align*}
& \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \cdot \mathrm{nH}_{2} \mathrm{O}=210 \\
& \stackrel{192}{ } \quad \therefore \mathrm{n}=18
\end{align*}
$$

since $M_{r}$ of water is $18 \quad n=$
(c) The two 'ends' of the double bond have different groups bonded to the carbon atoms (of the double bond) / they have different structural formulae, so cannot be stereo / geometric isomers
(d) eg sodium ethanoate / ethanoic acid (1) methane (1)
(e) $\quad \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{5} \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}+2 \mathrm{CO}_{2}$
(f)

(g) (Fractional) distillation / (preparative) gas chromatography / HPLC
(h) (i) eg An optically active isomer that will rotate the plane of polarised light I an isomer with a chiral centre
(ii) An equimolar mixture of both enantiomers (that has no apparent effect on the plane of polarised light)
Q. 4 (a) Benzene is a compound whose molecules contain six carbon atoms bonded in a (hexagonal) ring
All the carbon to carbon bond lengths are equal / intermediate (1)
Each carbon atom is bonded to two other carbon atoms and a hydrogen atom (1) by $\sigma$-bonds (1)
All the C - $\hat{C}-C$ angles are the same $/ 120^{\circ}$ (1)
The remaining $p$ electron of each carbon atom / overlap of $p$ orbitals forms a delocalised cloud of electrons / $\pi$-system (1) above and below the plane (1)
Credit can be gained from labelled diagram
[Candidates can gain a maximum of (4) for this parf]
This delocalisation increases the stability (1) of the molecule and this stability is maintained by benzene undergoing substitution reactions in preference to addition reactions (that would destroy the delocalised system)
The $\pi$-cloud is electron rich and will be attracted to electron deficient electrophiles (1) [Candidates can gain (2) for this parf]

QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter

Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning.
(b)


catalyst eg $\mathrm{AlCl}_{3}$ (anhydrous) (1)
(c) (i) (There are two environments for the protons), the 3 aromatic protons at $\sim 6.8 \delta$ and the 9 methyl / aliphatic protons at $\sim 2.3 \delta$
These give a peak area of 3:9, ie.1:3
These environments are separate / discrete (1) therefore no splitting pattern
(ii) Dissolve in the minimum volume (1)

Of hot water (1)
(Filter hot) (1)
Cool (1)
Filter (1)
Dry (1)
(up to 4 max but candidates must give the first two points in order to gain full credit)
(iii)

(iv) Reagent $\mathbf{S}$ is alkaline potassium manganate(VII)

Reagent $\mathbf{T}$ is eg hydrochloric acid (1)
Q. 5 (a) (i) The nitrogen atom has a lone pair of electrons making it an electron pair donor / proton acceptor
(ii) Compound $\mathbf{L}$ must contain the grouping


The nitrogen atom must be bonded directly to the ring as a (primary) aromatic amine is formed on hydrolysis (1)

As the hydrolysis compound is a phenol (and has an OH group directly bonded to the ring) a methyl group must also be bonded directly to the ring, as the molecular formula is $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$ / the compound has the structure


The compound is likely to be an amide, as these are hydrolysed by bases to amines (1)

A suggested formula is

which is $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}$, an isomer of cathinone / has $M_{\mathrm{r}}$ of 149(1)

QWC Information organised clearly and coherently, using specialist vocabulary where appropriate
(b) (i)

(ii)


OR

[1]
(c) (i)



Correct catalyst (1)
Correct curly arrows and polarisation / formation of $\mathrm{Cl}^{+}$
Wheland intermediate (1) Production of HCl and regeneration of $\mathrm{FeCl}_{3}$ (1)
(ii) Volume of sodium hydroxide solution needed (1) How long to reflux (1)
(iii) The aromatic $\mathrm{C}-\mathrm{Cl}$ bond is stronger than the aliphatic $\mathrm{C}-\mathrm{Cl}$ bond (1) This is because a p-electron(s) of the chlorine atom in the aromatic compound becomes part of / incorporated into the delocalised $\pi$ system of the ring (1)
(iv)

chlorine has two isotopes 35/37 in a $3: 1$ ratio (1)

