

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2013

Total [13]

GCE CHEMISTRY - CH4

			SUMMER 2013 MARK SCHEME	
Q.1	(a)	(i)	(2-)Methylpropan-2-ol	[1]
		(ii)	30.1 / 30	[1]
		(iii)	(Concentrated) sulfuric acid / phosphoric acid / aluminium oxide / pumice	[1]
		(iv)		
			CH ₃ H CCH ₃ H	
			(with or without n)	[1]
		(v)		
			H H OH H H - C - C - C - C - H H H H H H (1) for structure, (1) for asterisk	[2]
		(vi)	I acidified potassium dichromate / H ⁺ , Cr ₂ O ₇ ²⁻ (aq)	[1]
			ethanal has a C = O bond at 1650-1750 cm ⁻¹ (metaldehyde does not have this bond) (1)	
			metaldehyde has a C $-$ O bond at 1000-1300 cm ⁻¹ (ethanal does not have this bond) (1)	[2]
	(b)	(i) Re	eagent 2,4-dinitrophenylhydrazine / 2,4-DNP OR iodine / NaOH or KI / NaOCI (1	1)
		Ol	oservation yellow / orange / red precipitate OR yellow precipitate (1)	[2]
		(ii) Re	eagent ethanol / sulfuric acid OR NaHCO₃ OR Ag ⁺ /NH₃ / Tollens	s' (1)
		Ol	Deservation sweet smelling liquid OR effervescence OR silver mirror (1)	[2]

© WJEC CBAC Ltd.

Q.2 React with iron(III) chloride solution (a) Purple solution with phenol, no reaction with methyl propenoate

OR

React with aqueous bromine / bromine water White precipitate with phenol (and bromine decolourised), bromine decolourised with methyl propenoate

(1) for reagent and (1) for observation with compound

[2]

(b) (i) It absorbs all colours except yellow / absorbs the blue end of the spectrum and reflects yellow - do not accept 'emits'

[1]

(ii) Tin / iron and concentrated hydrochloric acid [1]

Moles of 2,4-dinitrophenol = 7.36/184 = 0.040(c) (i) (1)

> Moles of 2,4-dinitrophenyl ethanoate = 7.91/226 = 0.035(1)

Percentage yield = $0.035 \times 100 / 0.040 = 87.5 / 88 \%$ (1) [3]

(ii) R_f value is given by distance travelled by the 2,4-dinitrophenol distance travelled by the solvent front

(d) Nickel / platinum (i)

[1]

(ii) The –OH groups are able to hydrogen bond with water (1) but these are a very small part of the 'urushiol' molecule (1)

Total [12]

[2]

Q.3 (a) (i) 48.5 / 49 % [1]

(ii) Find a use for the calcium sulfate [1]

(b) Total volume of aqueous sodium hydroxide needed = $\underline{26.40 \times 250}$ = 264.0 cm³ (1) 25.00

from the graph this is equivalent to 0.011 mole of the acid (1)

$$\therefore M_r \text{ of the acid} = \underbrace{mass}_{\text{no. of moles}} = \underbrace{2.31}_{0.011} = 210 \quad (1)$$

$$C_6H_8O_7$$
. $n H_2O = 210$
 \uparrow
 $192 \therefore n = 18$ (1)

since M_r of water is 18 n = 1 (1) [5]

- (c) The two 'ends' of the double bond have different groups bonded to the carbon atoms (of the double bond) / they have different structural formulae, so cannot be stereo / geometric isomers [1]
- (d) eg sodium ethanoate / ethanoic acid (1) methane (1) [2]

(e)
$$C_5H_6O_5 \rightarrow CH_3COCH_3 + 2CO_2$$
 [1]

(f)

(g) (Fractional) distillation / (preparative) gas chromatography / HPLC [1]

- (h) (i) eg An optically active isomer that will rotate the plane of polarised light
 / an isomer with a chiral centre [1]
 - (ii) An equimolar mixture of both enantiomers (that has no apparent effect on the plane of polarised light) [1]

Total [15]

[1]

[6]

QWC [2]

Q.4 (a) Benzene is a compound whose molecules contain six carbon atoms bonded in a (hexagonal) ring (1)

All the carbon to carbon bond lengths are equal / intermediate (1)

Each carbon atom is bonded to two other carbon atoms and a hydrogen atom (1) by σ -bonds (1)

All the $C - \hat{C} - C$ angles are the same / 120° (1)

The remaining p electron of each carbon atom / overlap of p orbitals forms a delocalised cloud of electrons / π -system (1) above and below the plane (1)

Credit can be gained from labelled diagram

[Candidates can gain a maximum of (4) for this part

This delocalisation increases the **stability** (1) of the molecule and this stability is maintained by benzene undergoing substitution reactions in preference to addition reactions (that would destroy the delocalised system)

The π -cloud is **electron rich** and will be attracted to electron deficient electrophiles (1) [Candidates can gain (2) for this part]

QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter (1)

Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning. (1)

(b) + CH₃Cl + HCl (1) catalyst eg AlCl₃ (anhydrous) (1) [2]

(c) (i) (There are two environments for the protons), the 3 aromatic protons at ~6.8 δ and the 9 methyl / aliphatic protons at ~ 2.3 δ (1) These give a peak area of 3:9, ie.1:3 (1) These environments are separate / discrete (1) therefore no splitting pattern

[3]

(ii) Dissolve in the minimum volume (1)
Of hot water (1)
(Filter hot) (1)
Cool (1)
Filter (1)
Dry (1)

(up to 4 max but candidates must give the first two points in order to gain full credit)

[4]

(iii)

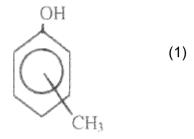
[1]

(iv) Reagent **S** is alkaline potassium manganate(VII) (1)

Reagent **T** is eg hydrochloric acid (1)

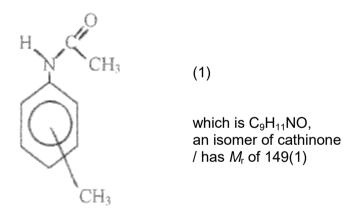
[2]

Total [20]


Q.5 (a) (i) The **nitrogen atom** has a **lone pair** of electrons making it an electron pair donor / proton acceptor

[1]

(ii) Compound **L** must contain the grouping -N-C (1


The nitrogen atom must be bonded directly to the ring as a (primary) aromatic amine is formed on hydrolysis (1)

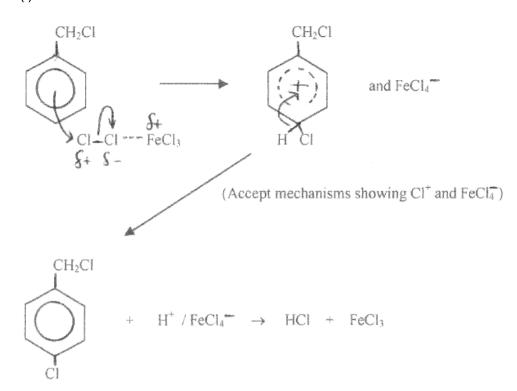
As the hydrolysis compound is a phenol (and has an OH group directly bonded to the ring) a methyl group must also be bonded directly to the ring, as the molecular formula is C_7H_8O / the compound has the structure

The compound is likely to be an amide, as these are hydrolysed by bases to amines (1)

A suggested formula is

[6]

QWC Information organised clearly and coherently, using specialist vocabulary where appropriate QWC [1]


(b) (i)

(ii)

OR

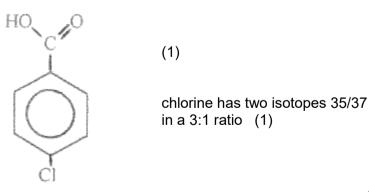
© WJEC CBAC Ltd.

(c) (i)

Correct catalyst (1)

Correct curly arrows and polarisation / formation of Cl⁺ (1)

Wheland intermediate (1) Production of HCl and regeneration of FeCl₃ (1)


[4]

(ii) Volume of sodium hydroxide solution needed (1) How long to reflux (1)

[2]

(iii) The aromatic C - Cl bond is stronger than the aliphatic C - Cl bond (1) This is because a p-electron(s) of the chlorine atom in the aromatic compound becomes part of / incorporated into the delocalised π system of the ring (1) [2]

(iv)

[2]

Total [20]